Merging MCMC Subposteriors through Gaussian-Process Approximations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MCMC Methods for Gaussian Process Models Using Fast Approximations for the Likelihood

Gaussian Process (GP) models are a powerful and flexible tool for non-parametric regression and classification. Computation for GP models is intensive, since computing the posterior density, π, for covariance function parameters requires computation of the covariance matrix, C, a pn operation, where p is the number of covariates and n is the number of training cases, and then inversion of C, an...

متن کامل

Tree-structured Gaussian Process Approximations

Gaussian process regression can be accelerated by constructing a small pseudodataset to summarize the observed data. This idea sits at the heart of many approximation schemes, but such an approach requires the number of pseudo-datapoints to be scaled with the range of the input space if the accuracy of the approximation is to be maintained. This presents problems in time-series settings or in s...

متن کامل

Streaming Sparse Gaussian Process Approximations

Sparse pseudo-point approximations for Gaussian process (GP) models provide a suite of methods that support deployment of GPs in the large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which both the posterior distribution over function values and the hyperparameter estimates are updated in an online ...

متن کامل

Tree-structured Gaussian process approximations Supplementary material

subject to q(f |u) = ∏ i q(fi|u) and ∫ dfiq(fi|u) = 1. It is noted that KL(a||b) is the measurement of information “lost” when using b to approximate a. It was argued in [1] that it is appropriate to use this KL divergence as an approximation measure since we are trying to find a sparse representation u and its relationship with f to approximate p by q. The KL divergence above can be expanded a...

متن کامل

Gaussian Process Approximations of Stochastic Differential Equations

Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2018

ISSN: 1936-0975

DOI: 10.1214/17-ba1063